首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35418篇
  免费   781篇
  国内免费   147篇
化学   19934篇
晶体学   215篇
力学   1145篇
综合类   9篇
数学   5346篇
物理学   9697篇
  2022年   182篇
  2021年   510篇
  2020年   515篇
  2019年   471篇
  2018年   547篇
  2017年   484篇
  2016年   870篇
  2015年   733篇
  2014年   818篇
  2013年   1626篇
  2012年   1688篇
  2011年   1984篇
  2010年   1173篇
  2009年   1060篇
  2008年   1654篇
  2007年   1594篇
  2006年   1473篇
  2005年   1850篇
  2004年   1902篇
  2003年   1369篇
  2002年   1005篇
  2001年   792篇
  2000年   739篇
  1999年   491篇
  1998年   407篇
  1997年   384篇
  1996年   482篇
  1995年   442篇
  1994年   425篇
  1993年   467篇
  1992年   471篇
  1991年   409篇
  1990年   327篇
  1989年   310篇
  1988年   308篇
  1987年   352篇
  1986年   324篇
  1985年   423篇
  1984年   392篇
  1983年   320篇
  1982年   349篇
  1981年   353篇
  1980年   333篇
  1979年   316篇
  1978年   325篇
  1977年   286篇
  1976年   264篇
  1975年   268篇
  1974年   251篇
  1973年   242篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
21.
22.
This review summarizes the different tools and concepts that are commonly applied in air quality monitoring. The monitoring of atmosphere is extremely important as the air quality is an important problem for large communities. Main requirements for analytical devices used for monitoring include a long period of autonomic operation and portability. These instruments, however, are often characterized by poor analytical performance. Monitoring networks are the most common tools used for monitoring, so large-scale monitoring programmes are summarized here. Biomonitoring, as a cheap and convenient alternative to traditional sample collection, is becoming more and more popular, although its main drawback is the lack of standard procedures. Telemonitoring is another approach to air monitoring, which offers some interesting opportunities, such as ease of coverage of large or remote areas, constituting a complementary approach to traditional strategies; however, it requires huge costs.  相似文献   
23.
Autologous bone grafts, used mainly in extensive bone loss, are considered the gold standard treatment in regenerative medicine, but still have limitations mainly in relation to the amount of bone available, donor area, morbidity and creation of additional surgical area. This fact encourages tissue engineering in relation to the need to develop new biomaterials, from sources other than the individual himself. Therefore, the present study aimed to investigate the effects of an elastin and collagen matrix on the bone repair process in critical size defects in rat calvaria. The animals (Wistar rats, n = 30) were submitted to a surgical procedure to create the bone defect and were divided into three groups: Control Group (CG, n = 10), defects filled with blood clot; E24/37 Group (E24/37, n = 10), defects filled with bovine elastin matrix hydrolyzed for 24 h at 37 °C and C24/25 Group (C24/25, n = 10), defects filled with porcine collagen matrix hydrolyzed for 24 h at 25 °C. Macroscopic and radiographic analyses demonstrated the absence of inflammatory signs and infection. Microtomographical 2D and 3D images showed centripetal bone growth and restricted margins of the bone defect. Histologically, the images confirmed the pattern of bone deposition at the margins of the remaining bone and without complete closure by bone tissue. In the morphometric analysis, the groups E24/37 and C24/25 (13.68 ± 1.44; 53.20 ± 4.47, respectively) showed statistically significant differences in relation to the CG (5.86 ± 2.87). It was concluded that the matrices used as scaffolds are biocompatible and increase the formation of new bone in a critical size defect, with greater formation in the polymer derived from the intestinal serous layer of porcine origin (C24/25).  相似文献   
24.
25.
Applied Biochemistry and Biotechnology - The human exposure to bisphenol A (BPA) occurs frequently. Once, this compound was one of the highest volume chemicals produced worldwide and used as a...  相似文献   
26.
In this work, we have used the MuMax3 software to simulate devices consisting of a ferromagnetic thin film placed over a heavy metal thin film. The devices are two interconnected partial-disks where a Néel domain wall is formed in the disks junction. In our simulations we investigate devices with disk radius r=50 nm and different distance d between the disks centers (from d=12 nm to d=2R=100 nm). By applying strong sinusoidal external magnetic fields, we find a mechanism able to create, annihilate and even manipulate a skyrmion in each side of the device. This mechanism is discussed in terms of interactions between skyrmion and domain wall. The Néel domain wall formed in the center of the device interacts with the Néel skyrmion, leading to a process of transporting a skyrmion from one disk to the other periodically. Our results have relevance for potential applications in spintronics such as logical devices.  相似文献   
27.
28.
ABSTRACT

Fast field-cycling (FFC) nuclear magnetic resonance relaxometry is a well-established method to determine the relaxation rates as a function of magnetic field strength. This so-called nuclear magnetic relaxation dispersion gives insight into the underlying molecular dynamics of a wide range of complex systems and has gained interest especially in the characterisation of biological tissues and diseases. The combination of FFC techniques with magnetic resonance imaging (MRI) offers a high potential for new types of image contrast more specific to pathological molecular dynamics. This article reviews the progress in FFC-MRI over the last decade and gives an overview of the hardware systems currently in operation. We discuss limitations and error correction strategies specific to FFC-MRI such as field stability and homogeneity, signal-to-noise ratio, eddy currents and acquisition time. We also report potential applications with impact in biology and medicine. Finally, we discuss the challenges and future applications in transferring the underlying molecular dynamics into novel types of image contrast by exploiting the dispersive properties of biological tissue or MRI contrast agents.  相似文献   
29.
Hybrid materials in which reduced graphene oxide (rGO) is decorated with Au nanoparticles (rGO–Au NPs) were obtained by the in situ reduction of GO and AuCl4?(aq) by ascorbic acid. On laser excitation, rGO could be oxidized as a result of the surface plasmon resonance (SPR) excitation in the Au NPs, which generates activated O2 through the transfer of SPR‐excited hot electrons to O2 molecules adsorbed from air. The SPR‐mediated catalytic oxidation of p‐aminothiophenol (PATP) to p,p′‐dimercaptoazobenzene (DMAB) was then employed as a model reaction to probe the effect of rGO as a support for Au NPs on their SPR‐mediated catalytic activities. The increased conversion of PATP to DMAB relative to individual Au NPs indicated that charge‐transfer processes from rGO to Au took place and contributed to improved SPR‐mediated activity. Since the transfer of electrons from Au to adsorbed O2 molecules is the crucial step for PATP oxidation, in addition to the SPR‐excited hot electrons of Au NPs, the transfer of electrons from rGO to Au contributed to increasing the electron density of Au above the Fermi level and thus the Au‐to‐O2 charge‐transfer process.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号